Skip to article frontmatterSkip to article content

Peano kernel error formulas

from pylab import *

The error formulae we have derived so far assume certain derivatives exist and are continuous. This may be a restrictive assumption in some cases. Even if the function is not differentiable everywhere, it the derivatives may be integrable. In this case, we can Taylor formula with an integral remainder term to perform the error analysis.

1Trapezoidal rule

Assume that ff is continuously differentiable and ff'' is integrable on [a,b][a,b], i.e.,

abf(x)dx<\int_a^b |f''(x)| \ud x < \infty

Then Taylor’s theorem gives

f(x)=f(a)+(xa)f(a)+ax(xt)f(t)dt=:p1(x)+R2(x)f(x) = f(a) + (x-a) f'(a) + \int_a^x (x-t) f''(t) \ud t =: p_1(x) + R_2(x)

The quadrature error EnE_n is a linear operator

En(F+G)=En(F)+En(G),F,GC[a,b]E_n(F+G) = E_n(F) + E_n(G), \qquad F,G \in \cts[a,b]

Thus

E1(f)=E1(p1)+E1(R2)=E1(R2)E_1(f) = E_1(p_1) + E_1(R_2) = E_1(R_2)

since Trapezoidal rule is exact for linear polynomials. Now

E1(R2)=abR2(x)dxba2[R2(a)+R2(b)],R2(a)=0=abax(xt)f(t)dtdxba2ab(bt)f(t)dt\begin{aligned} E_1(R_2) &= \int_a^b R_2(x) \ud x - \frac{b-a}{2}[R_2(a) + R_2(b)], \qquad R_2(a) = 0 \\ &= \int_a^b \int_a^x (x-t) f''(t) \ud t \ud x - \frac{b-a}{2}\int_a^b (b-t) f''(t) \ud t \end{aligned}

For any integrable function G(x,t)G(x,t)

abaxG(x,t)dtdx=abtbG(x,t)dxdt\int_a^b \int_a^x G(x,t) \ud t \ud x = \int_a^b \int_t^b G(x,t) \ud x \ud t

Using this result in the above error formula

E1(R2)=abf(t)tb(xt)dxdtba2ab(bt)f(t)dt=12abf(t)(ta)(tb)dt\begin{aligned} E_1(R_2) &= \int_a^b f''(t) \int_t^b (x-t) \ud x \ud t - \frac{b-a}{2} \int_a^b (b-t) f''(t) \ud t \\ &= \half \int_a^b f''(t) (t-a)(t-b) \ud t \end{aligned}

For the composite Trapezoid rule, the error is obtained by adding the error from each interval and can be written as

En(f)=abK(t)f(t)dtE_n(f) = \int_a^b K(t) f''(t) \ud t

where

K(t)=12(txj1)(txj),t[xj1,xj],j=1,2,,nK(t) = \half (t - x_{j-1})(t - x_j), \qquad t \in [x_{j-1}, x_j], \qquad j=1,2,\ldots,n

This gives the following error estimate

En(f)Kabf(t)dt=h28abf(t)dt|E_n(f)| \le \norm{K}_\infty \int_a^b |f''(t)| \ud t = \frac{h^2}{8} \int_a^b |f''(t)| \ud t

Compare this to the previous error estimate

En(f)=ba12h2f(η)ba12h2f|E_n(f)| = \frac{b-a}{12} h^2 |f''(\eta)| \le \frac{b-a}{12} h^2 \norm{f''}_\infty

which may over-estimate the error[1] if ff'' has a peaky distribution.

Footnotes
  1. Note that abf(t)dt(ba)f\int_a^b |f''(t)|\ud t \le (b-a)\norm{f''}_\infty.