8.6 Newton-Cotes integration
from pylab import *
from scipy.integrate import newton_cotes
The Trapezoidal and Simpson rules were based on integrating a polynomial approximation. Such methods are called Newton-Cotes integration methods. If we choose n + 1 n+1 n + 1 distinct points in [ a , b ] [a,b] [ a , b ] and approximate the function f : [ a , b ] → R f : [a,b] \to \re f : [ a , b ] → R by interpolation
p n ( x ) = ∑ j = 0 n f ( x j , n ) ℓ j , n ( x ) , x ∈ [ a , b ] p_n(x) = \sum_{j=0}^n f(x_{j,n}) \ell_{j,n}(x), \qquad x \in [a,b] p n ( x ) = j = 0 ∑ n f ( x j , n ) ℓ j , n ( x ) , x ∈ [ a , b ] the integral can be approximated by
I n ( f ) = ∫ a b p n ( x ) d x = ∑ j = 0 n f ( x j , n ) ∫ a b ℓ j , n ( x ) d x = ∑ j = 0 n w j , n f ( x j , n ) I_n(f) = \int_a^b p_n(x) \ud x = \sum_{j=0}^n f(x_{j,n}) \clr{red}{ \int_a^b \ell_{j,n}(x) \ud x } = \sum_{j=0}^n \clr{red}{w_{j,n}} f(x_{j,n}) I n ( f ) = ∫ a b p n ( x ) d x = j = 0 ∑ n f ( x j , n ) ∫ a b ℓ j , n ( x ) d x = j = 0 ∑ n w j , n f ( x j , n ) where the weights are given by
w j , n = ∫ a b ℓ j , n ( x ) d x w_{j,n} = \int_a^b \ell_{j,n}(x) \ud x w j , n = ∫ a b ℓ j , n ( x ) d x As an example for n = 3 n=3 n = 3 and using uniformly spaced points, we interpolate by a cubic polynomial and the integral is approximated as
I 3 ( f ) = 3 h 8 [ f 0 + 3 f 1 + 3 f 2 + f 3 ] I_3(f) = \frac{3h}{8}[f_0 + 3 f_1 + 3 f_2 + f_3] I 3 ( f ) = 8 3 h [ f 0 + 3 f 1 + 3 f 2 + f 3 ] which is known as Boole’s rule . For general n n n , we can state the following error estimates.
(a) For n n n even, f ∈ C n + 2 [ a , b ] f \in \cts^{n+2}[a,b] f ∈ C n + 2 [ a , b ]
I ( f ) − I n ( f ) = C n h n + 3 f ( n + 2 ) ( η ) , η ∈ [ a , b ] I(f) - I_n(f) = C_n h^{n+3} f^{(n+2)}(\eta), \qquad \eta \in [a,b] I ( f ) − I n ( f ) = C n h n + 3 f ( n + 2 ) ( η ) , η ∈ [ a , b ] C n = 1 ( n + 2 ) ! ∫ 0 n μ 2 ( μ − 1 ) … ( μ − n ) d μ C_n = \frac{1}{(n+2)!} \int_0^n \mu^2 (\mu-1) \ldots (\mu-n) \ud \mu C n = ( n + 2 )! 1 ∫ 0 n μ 2 ( μ − 1 ) … ( μ − n ) d μ (b) For n n n odd and f ∈ C n + 1 [ a , b ] f \in \cts^{n+1}[a,b] f ∈ C n + 1 [ a , b ]
I ( f ) − I n ( f ) = C n h n + 2 f ( n + 1 ) ( η ) , η ∈ [ a , b ] I(f) - I_n(f) = C_n h^{n+2} f^{(n+1)}(\eta), \qquad \eta \in [a,b] I ( f ) − I n ( f ) = C n h n + 2 f ( n + 1 ) ( η ) , η ∈ [ a , b ] C n = 1 ( n + 1 ) ! ∫ 0 n μ ( μ − 1 ) … ( μ − n ) d μ C_n = \frac{1}{(n+1)!} \int_0^n \mu (\mu-1) \ldots (\mu-n) \ud \mu C n = ( n + 1 )! 1 ∫ 0 n μ ( μ − 1 ) … ( μ − n ) d μ The accuracy of a quadrature formula can be characterized by the largest set of polynomials which it can integrate exactly.
Trapezoidal rule (n = 1 n=1 n = 1 ) has degree of precision one and Simpson rule (n = 2 n=2 n = 2 ) has degree of precision three. For n n n odd, Newton-Cotes has degree of precision of n n n while for n n n even, it has degree of precision n + 1 n+1 n + 1 . On uniformly spaced nodes, the interpolating polynomial p n ( x ) p_n(x) p n ( x ) does not always converge. Hence the Newton-Cotes formulae may not converge also. Consider
I = ∫ − 4 4 d x 1 + x 2 = 2 tan − 1 ( 4 ) ≈ 2.6516 I = \int_{-4}^4 \frac{\ud x}{1 + x^2} = 2 \tan^{-1}(4) \approx 2.6516 I = ∫ − 4 4 1 + x 2 d x = 2 tan − 1 ( 4 ) ≈ 2.6516 xmin, xmax = -4.0, 4.0
f = lambda x: 1/(1 + x**2)
exact = 2.0 * arctan(4.0)
for n in arange(2,12,2):
w,B = newton_cotes(n, equal=1)
x = linspace(xmin,xmax,n+1)
dx = (xmax-xmin)/n
quad = dx * sum(w * f(x))
error = abs(quad - exact)
print('{:4d} {:12.9f} {:12.5e}'.format(n, quad, error))
2 5.490196078 2.83856e+00
4 2.277647059 3.73988e-01
6 3.328798127 6.77163e-01
8 1.941094304 7.10541e-01
10 3.595560400 9.43925e-01
The error shown in last column is increasing.
Hence it is not advisable to use Newton-Cotes rule for large degree n n n . However, we can use moderate but fixed degree of the interpolating polynomial and build a composite rule. The convergence here is obtained as the length of the sub-intervals tends to zero but the polynomial degree in each sub-interval remains fixed.
We now look at necessary and sufficient conditions for a numerical integration formula to converge.
Let F \mathcal{F} F be a set of continuous functions on a given interval [ a , b ] [a,b] [ a , b ] . We say that F \mathcal{F} F is dense in C [ a , b ] \cts[a,b] C [ a , b ] if for every f ∈ C [ a , b ] f \in \cts[a,b] f ∈ C [ a , b ] and every ϵ > 0 \epsilon > 0 ϵ > 0 , ∃ f ϵ ∈ F \exists f_\epsilon \in \mathcal{F} ∃ f ϵ ∈ F such that
∥ f − f ϵ ∥ ∞ ≤ ϵ \norm{f - f_\epsilon}_\infty \le \epsilon ∥ f − f ϵ ∥ ∞ ≤ ϵ (1) By Weirstrass theorem, the set of all polynomials is dense in C [ a , b ] \cts[a,b] C [ a , b ] .
(2) Define the set of continuous, piecewise affine functions
F = { f ∈ C [ a , b ] : ∃ a partition { x j } of [ a , b ] s.t. f ∣ [ x j − 1 , x j ] ∈ P 1 } \mathcal{F} = \{ f \in \cts[a,b] : \exists \textrm{ a partition $\{x_j\}$ of $[a,b]$ s.t. } f|_{[x_{j-1},x_j]} \in \poly_1 \} F = { f ∈ C [ a , b ] : ∃ a partition { x j } of [ a , b ] s.t. f ∣ [ x j − 1 , x j ] ∈ P 1 } Then F \mathcal{F} F is dense in C [ a , b ] \cts[a,b] C [ a , b ] .
Let
I n ( f ) = ∑ j = 0 n w j , n f ( x j , n ) , n ≥ 1 I_n(f) = \sum_{j=0}^n w_{j,n} f(x_{j,n}), \qquad n \ge 1 I n ( f ) = j = 0 ∑ n w j , n f ( x j , n ) , n ≥ 1 be a sequence of numerical integration formulae that approximate
I ( f ) = ∫ a b f ( x ) d x I(f) = \int_a^b f(x) \ud x I ( f ) = ∫ a b f ( x ) d x Let F \mathcal{F} F be a dense subset of C [ a , b ] \cts[a,b] C [ a , b ] . Then
I n ( f ) → I ( f ) , ∀ f ∈ C [ a , b ] I_n(f) \to I(f), \qquad \forall f \in \cts[a,b] I n ( f ) → I ( f ) , ∀ f ∈ C [ a , b ] if and only if
I n ( f ) → I ( f ) I_n(f) \to I(f) I n ( f ) → I ( f ) for all f ∈ F f \in \mathcal{F} f ∈ F
B = sup n ∑ j = 0 n ∣ w j , n ∣ < ∞ B = \sup_n \sum_{j=0}^n |w_{j,n}| < \infty B = sup n ∑ j = 0 n ∣ w j , n ∣ < ∞
Note that for an integration formula
∑ j = 0 n w j , n = b − a \sum_{j=0}^n w_{j,n} = b - a j = 0 ∑ n w j , n = b − a (a) Condition (14) implies (1) is obvious since F \mathcal{F} F is a subset of C [ a , b ] \cts[a,b] C [ a , b ] . That it implies (2) also is an application of the uniform boundedness principle.
(b) Now we prove the reverse implication. We have to use the density of F \mathcal{F} F and the given two conditions. Let ϵ > 0 \epsilon > 0 ϵ > 0 be arbitrary and decompose the integration error into three parts;
I ( f ) − I n ( f ) = I ( f ) − I ( f ϵ ) + I ( f ϵ ) − I n ( f ϵ ) + I n ( f ϵ ) − I n ( f ) ∣ I ( f ) − I n ( f ) ∣ ≤ ∣ I ( f ) − I ( f ϵ ) ∣ + ∣ I ( f ϵ ) − I n ( f ϵ ) ∣ + ∣ I n ( f ϵ ) − I n ( f ) ∣ ≤ ( b − a ) ∥ f − f ϵ ∥ ∞ + ∣ I ( f ϵ ) − I n ( f ϵ ) ∣ + ∥ f − f ϵ ∥ ∞ ∑ j = 0 n ∣ w j , n ∣ ⏟ ≤ B \begin{align*}
I(f) - I_n(f) &= \clr{red}{I(f) - I(f_\epsilon)} + \clr{blue}{I(f_\epsilon) - I_n(f_\epsilon) } + \clr{magenta}{ I_n(f_\epsilon) - I_n(f) } \\
|I(f) - I_n(f)|
&\le |I(f) - I(f_\epsilon)| + |I(f_\epsilon) - I_n(f_\epsilon)| + |I_n(f_\epsilon) - I_n(f)| \\
&\le (b-a)\norm{f - f_\epsilon}_\infty + |I(f_\epsilon) - I_n(f_\epsilon)| + \norm{f - f_\epsilon}_\infty \underbrace{\sum_{j=0}^n |w_{j,n}|}_{\le B}
\end{align*} I ( f ) − I n ( f ) ∣ I ( f ) − I n ( f ) ∣ = I ( f ) − I ( f ϵ ) + I ( f ϵ ) − I n ( f ϵ ) + I n ( f ϵ ) − I n ( f ) ≤ ∣ I ( f ) − I ( f ϵ ) ∣ + ∣ I ( f ϵ ) − I n ( f ϵ ) ∣ + ∣ I n ( f ϵ ) − I n ( f ) ∣ ≤ ( b − a ) ∥ f − f ϵ ∥ ∞ + ∣ I ( f ϵ ) − I n ( f ϵ ) ∣ + ∥ f − f ϵ ∥ ∞ ≤ B j = 0 ∑ n ∣ w j , n ∣ Using density, choose f ϵ f_\epsilon f ϵ such that
∥ f − f ϵ ∥ ∞ ≤ ϵ 2 ( b − a + B ) \norm{f - f_\epsilon}_\infty \le \frac{\epsilon}{2(b-a + B)} ∥ f − f ϵ ∥ ∞ ≤ 2 ( b − a + B ) ϵ Using property (1), we can choose n n n large enough so that
∣ I ( f ϵ ) − I n ( f ϵ ) ∣ ≤ ϵ 2 |I(f_\epsilon) - I_n(f_\epsilon)| \le \frac{\epsilon}{2} ∣ I ( f ϵ ) − I n ( f ϵ ) ∣ ≤ 2 ϵ Then
∣ I ( f ) − I n ( f ) ∣ ≤ ( b − a ) ϵ 2 ( b − a + B ) + ϵ 2 + B ϵ 2 ( b − a + B ) = ϵ \begin{align}
|I(f) - I_n(f)|
&\le \frac{(b-a) \epsilon}{2(b - a + B)} + \frac{\epsilon}{2} + \frac{B \epsilon}{2 (b - a + B)} \\
&= \epsilon
\end{align} ∣ I ( f ) − I n ( f ) ∣ ≤ 2 ( b − a + B ) ( b − a ) ϵ + 2 ϵ + 2 ( b − a + B ) B ϵ = ϵ Since ε was arbitrary, we conclude that I n ( f ) → I ( f ) I_n(f) \to I(f) I n ( f ) → I ( f ) .
For the function f ( x ) = 1 / ( 1 + x 2 ) f(x) = 1/(1+x^2) f ( x ) = 1/ ( 1 + x 2 ) , x ∈ [ − 4 , 4 ] x \in [-4,4] x ∈ [ − 4 , 4 ] , the Newton-Cotes on uniform points does not converge.
Take F \mathcal{F} F to be set of all polynomials. Then given any f ∈ F f \in \mathcal{F} f ∈ F , clearly I n ( f ) = I ( f ) I_n(f) = I(f) I n ( f ) = I ( f ) when n ≥ n \ge n ≥ degree of f f f , so condition (1) of theorem is satisfied.
However, property (2) does not hold for uniform points. The weights
w j , n = ∫ a b ℓ j , n ( x ) d x w_{j,n} = \int_a^b \ell_{j,n}(x) \ud x w j , n = ∫ a b ℓ j , n ( x ) d x increase with n n n taking both positive and negative values, so that B = ∞ B = \infty B = ∞ .
Here are the weights for n = 20 n=20 n = 20 intervals in [ 0 , 1 ] [0,1] [ 0 , 1 ] .
n = 20
w,B = newton_cotes(n, equal=1)
w = w / n
for w1 in w:
print("{:18.12f}".format(w1))
print("sum(w) = ", sum(w))
print("sum(|w|) = ", sum(abs(w)))
0.011825273249
0.114137717645
-0.236478370511
1.206186893482
-3.771031726716
10.336798219898
-22.708815844147
41.828057422070
-64.075279490324
82.797283471795
-90.005367135629
82.797283472028
-64.075279489974
41.828057422070
-22.708815843856
10.336798219942
-3.771031726694
1.206186893480
-0.236478370511
0.114137717645
0.011825273249
sum(w) = 0.9999999981875201
sum(|w|) = 544.1771559949144
Because the weights are large in size and take both signs, there is also more roundoff error when we add them, and the sum is not exactly one. This error increases as we use more points.
Atkinson, K. E. (2004). An Introduction to Numerical Analysis (2nd ed.). Wiley.