Skip to article frontmatterSkip to article content

6.4Hermite integral formula

from pylab import *
from scipy.interpolate import barycentric_interpolate

6.4.1Analytic functions

We first recall some results about analytic functions. For more details and some proofs, see Davis, 1963.

The converse is not true; not all CC^\infty functions are analytic.

Real analytic functions can be completely characterized by the growth of their derivatives.

Analyticity can be related to differentiability.

The necessary and sufficient condition is given by

6.4.2Lagrange interpolation

Let x0,x1,,xnx_0,x_1,\ldots,x_n be a set of n+1n+1 distinct interpolation points. Define

(x)=(xx0)(xx1)(xxn)\ell(x) = (x-x_0) (x-x_1) \ldots (x-x_n)

The Lagrange polynomials are given by

j(x)=(x)(xj)(xxj)\ell_j(x) = \frac{\ell(x)}{\ell'(x_j)(x-x_j)}

and the interpolant of degree nn is

p(x)=j=0nf(xj)j(x)p(x) = \sum_{j=0}^n f(x_j) \ell_j(x)

Let xx be any point which is distinct from the interpolation points. Let

Γj\Gamma_j be a contour in the complex plane that encloses xjx_j but none of the other points, nor the point xx.

Using the Cauchy integral formula, we see that

12πiΓjdt(t)(xt)=12πiΓjϕ(t)txjdtwhereϕ(t)=1(tx0)(txj1)(txj+1)(txn)(xt)=ϕ(xj)=1(xjx0)(xjxj1)(xjxj+1)(xjxn)(xxj)=1(xj)(xxj)\begin{aligned} & \quad \frac{1}{2\pi\ii} \oint_{\Gamma_j} \frac{\ud t}{\ell(t) (x-t)} \\ &= \frac{1}{2\pi\ii} \oint_{\Gamma_j} \frac{\phi(t)}{t-x_j} \ud t \\ & \textrm{where} \qquad \phi(t) = \frac{1}{(t-x_0)\ldots(t-x_{j-1})(t-x_{j+1})\ldots(t-x_n)(x-t)} \\ &= \phi(x_j) \\ &= \frac{1}{(x_j-x_0)\ldots(x_j-x_{j-1})(x_j-x_{j+1})\ldots(x_j-x_n)(x-x_j)} \\ &= \frac{1}{\ell'(x_j)(x-x_j)} \end{aligned}

Hence

j(x)=(x)(xj)(xxj)=12πiΓj(x)dt(t)(xt)\ell_j(x) = \frac{\ell(x)}{\ell'(x_j)(x-x_j)} = \frac{1}{2\pi\ii} \oint_{\Gamma_j} \frac{\ell(x) \ud t}{\ell(t) (x-t)}

Now let

Γ\Gamma' be a curve which encloses all of the points {xj}\{x_j\} but not the point xx and let ff be analytic on and interior to Γ\Gamma'. We can write Γ=jΓj\Gamma' = \cup_j \Gamma_j, where each Γj\Gamma_j encloses only xjx_j.

Then we can combine the Γj\Gamma_j integrals to get an expression for the interpolant.

p(x)=jf(xj)j(x)=12πijΓjf(xj)(x)dt(t)(xt)using same type of argument used above, we get=12πijΓjf(t)(x)dt(t)(xt)=12πiΓ(x)f(t)dt(t)(xt)\begin{aligned} p(x) &= \sum_j f(x_j) \ell_j(x) \\ &= \frac{1}{2\pi\ii} \sum_j \oint_{\Gamma_j} f(x_j) \frac{\ell(x) \ud t}{\ell(t) (x- t)} \\ & \qquad \textrm{using same type of argument used above, we get} \\ &= \frac{1}{2\pi\ii} \sum_j \oint_{\Gamma_j} f(t) \frac{\ell(x) \ud t}{\ell(t) (x-t)} \\ &= \frac{1}{2\pi\ii} \oint_{\Gamma'} \frac{\ell(x) f(t) \ud t}{\ell(t) (x-t)} \end{aligned}

Now suppose we enlarge the contour of integration Γ\Gamma' to a new contour

Γ that encloses xx as well as {xj}\{x_j\}, and we assume ff is analytic on and inside Γ, i.e., Γ=ΓΓ\Gamma = \Gamma' \cup \Gamma'' where Γ\Gamma'' encloses only the point xx.

Then

12πiΓ(x)f(t)dt(t)(xt)=12πiΓ(x)f(t)dt(t)(xt)+12πiΓ(x)f(t)dt(t)(xt)=p(x)(x)f(x)(x)=p(x)f(x)\begin{aligned} \frac{1}{2\pi\ii} \oint_{\Gamma} \frac{\ell(x) f(t) \ud t}{\ell(t) (x-t)} &= \frac{1}{2\pi\ii} \oint_{\Gamma'} \frac{\ell(x) f(t) \ud t}{\ell(t) (x-t)} + \frac{1} {2\pi\ii} \oint_{\Gamma''} \frac{\ell(x) f(t) \ud t}{\ell(t) (x-t)} \\ &= p(x) - \ell(x) \frac{f(x)}{\ell(x)} \\ &= p(x) - f(x) \end{aligned}

where we used the Cauchy integral formula to get the second term: f(x)-f(x).

6.4.3Effect of point distribution {xj}\{x_j\}

On a fixed contour Γ inside which ff is analytic, the quantities f(t)f(t) and txt-x in the error formula (17) are independent of {xj}\{x_j\}. The error depends on the ratio

(x)(t)=j=0n(xxj)j=0n(txj)\frac{\ell(x)}{\ell(t)} = \frac{ \prod\limits_{j=0}^n (x-x_j) }{ \prod\limits_{j=0}^n(t- x_j) }

If Γ can be taken far away from {xj}\{x_j\}, then for each tΓt \in \Gamma,

(x)(t)(x)tn+1,t\left| \frac{\ell(x)}{\ell(t)} \right| \approx \frac{|\ell(x)|}{|t|^{n+1}}, \qquad |t| \to \infty

this ratio will shrink exponentially as nn \to \infty, and if this happens, we may conclude that p(x)p(x) converges exponentially to f(x)f(x) as nn \to \infty. The crucial condition is that it must be possible to continue ff analytically far out to Γ.

References
  1. Davis, P. J. (1963). Interpolation and Approximation. Dover Publications.