Skip to article frontmatterSkip to article content

6.11Fourier transform

#%config InlineBackend.figure_format = 'svg'
from pylab import *

Periodic functions can be approximated by a series of sine and cosine functions. This leads us to the Fourier transform of a function defined on a bounded interval and we can think of this function being extended periodically to R\re.

6.11.1Fourier series

Let f:[π,π]Rf : [-\pi,\pi] \to \re be a function which is extended periodically to the whole real line. The Fourier series is defined as

Sf(x)=a0+k=1[akcos(kx)+bksin(kx)]Sf(x) = a_0 + \sum_{k=1}^\infty [ a_k \cos(k x) + b_k \sin(k x) ]

where

a0=12πππf(x)dxak=1πππf(x)cos(kx)dx,k=1,2,bk=1πππf(x)sin(kx)dx,k=1,2,\begin{align*} a_0 &= \frac{1}{2\pi} \int_{-\pi}^\pi f(x) \ud x \\ a_k &= \frac{1}{\pi} \int_{-\pi}^\pi f(x) \cos(k x) \ud x, \qquad k=1, 2, \ldots \\ b_k &= \frac{1}{\pi} \int_{-\pi}^\pi f(x) \sin(k x) \ud x, \qquad k=1, 2, \ldots \end{align*}

Due to periodicity kk only takes integer values.

The Fourier series can be written as

Sf(x)=k=f^keikx,f^k=12πππf(x)eikxdxSf(x) = \sum_{k=-\infty}^\infty \hat f_k \ee^{\ii k x}, \qquad \hat f_k = \frac{1}{2\pi} \int_{-\pi}^\pi f(x) \ee^{-\ii k x} \ud x

where

f^0=a0,f^k={12(ak+ibk),k=1,2,12(akibk),k=+1,+2,\hat f_0 = a_0, \qquad \hat f_k = \begin{cases} \half(a_k + \ii b_k), & k = -1, -2, \ldots \\ \half(a_k - \ii b_k), & k = +1, +2, \ldots \end{cases}

If f(x)f(x) is real, ak,bka_k, b_k are real and we have

f^k=f^k,k=1,2,\hat f_{-k} = \conj{\hat f_k}, \qquad k=1,2,\ldots

6.11.2Convergence of Fourier series

When is f=Sff = Sf ? To talk of such questions, let us define the truncated series

Snf(x)=a0+k=1n[akcos(kx)+bksin(kx)]=k=nnf^keikxS_n f(x) = a_0 + \sum_{k=1}^n [ a_k \cos(k x) + b_k \sin(k x) ] = \sum_{k=-n}^n \hat f_k \ee^{\ii k x}

Note that we have an expansion in terms of an orthogonal basis ϕk(x)=eikx\phi_k(x) = \ee^{\ii k x}, since

ππϕj(x)ϕk(x)dx=2πδjk\int_{-\pi}^\pi \phi_j(x) \phi_k(x) \ud x = 2 \pi \delta_{jk}

There are three types of convergence wrt nn \to \infty.

  1. pointwise convergence

    Snf(x)f(x),xS_n f(x) \to f(x), \qquad \forall x
  2. uniform convergence

    Snff0\norm{S_n f - f}_\infty \to 0
  3. mean square convergence

    Snff20\norm{S_n f - f}_2 \to 0

where the norms are defined as

f=maxx[π,π]f(x),f2=(ππf(x)2dx)12\norm{f}_\infty = \max_{x \in [-\pi,\pi]} |f(x)|, \qquad \norm{f}_2 = \left( \int_{-\pi}^\pi |f(x)|^2 \ud x \right)^\half

Uniform convergence is the strongest property, and it implies pointwise and mean square convergence Tveito & Winther, 2005.

Clearly we need f^k0|\hat f_k| \to 0 as k|k| \to \infty for the series to converge and the rate of decay needs to be sufficiently fast. The rate of decay of f^k\hat f_k depends on the smoothness of the function.

The term piecewise continuous can be replaced with bounded variation. The proof is based on an adaptation of Gander & Kwok, 2018, Theorem 4.2.

References
  1. Tveito, A., & Winther, R. (2005). Introduction to Partial Differential Equations (Vol. 29). Springer-Verlag. 10.1007/b138016
  2. Davis, P. J. (1963). Interpolation and Approximation. Dover Publications.
  3. Shen, J., Tang, T., & Wang, L.-L. (2011). Spectral Methods: Algorithms, Analysis and Applications (Vol. 41). Springer Berlin Heidelberg. 10.1007/978-3-540-71041-7
  4. Gander, M. J., & Kwok, F. (2018). Numerical Analysis of Partial Differential Equations Using Maple and MATLAB. Society for Industrial. 10.1137/1.9781611975314
  5. Rudin, W. (1976). Principles of Mathematical Analysis (3rd ed.). McGraw Hill.