6.6 Chebyshev approximation
from pylab import *
from scipy.interpolate import barycentric_interpolate
Trefethen, 2019 provides more details and proofs regarding these results. The decay rate of Chebyshev coefficients can also be deduced by identifying Chebyshev series with the Fourier cosine series (see later chapters) and using the decay properties of Fourier transform.
6.6.1 Chebyshev series ¶ If f : [ − 1 , 1 ] → R f : [-1,1] \to \re f : [ − 1 , 1 ] → R is Lipschitz continuous, it has a unique representation as a Chebyshev series
f ( x ) = ∑ k = 0 ∞ a k T k ( x ) f(x) = \sum_{k=0}^\infty a_k T_k(x) f ( x ) = k = 0 ∑ ∞ a k T k ( x ) which is absolutely and uniformly convergent. The coefficients are given by
a 0 = 1 π ∫ − 1 1 f ( x ) 1 − x 2 d x , a k = 2 π ∫ − 1 1 f ( x ) T k ( x ) 1 − x 2 d x , k ≥ 1 a_0 = \frac{1}{\pi} \int_{-1}^1 \frac{f(x)}{\sqrt{1-x^2}} \ud x, \qquad
a_k = \frac{2}{\pi} \int_{-1}^1 \frac{f(x) T_k(x)}{\sqrt{1-x^2}} \ud x, \qquad k \ge 1 a 0 = π 1 ∫ − 1 1 1 − x 2 f ( x ) d x , a k = π 2 ∫ − 1 1 1 − x 2 f ( x ) T k ( x ) d x , k ≥ 1 Theorem 2 (Decay of Chebyshev coefficients)
For any integer ν ≥ 0 \nu \ge 0 ν ≥ 0 , let f f f and its derivatives through f ( ν − 1 ) f^{(\nu-1)} f ( ν − 1 ) be absolutely continuous on [ − 1 , 1 ] [-1,1] [ − 1 , 1 ] and suppose the ν’th derivative f ( ν ) f^{(\nu)} f ( ν ) is of bounded variation V V V . Then for k ≥ ν + 1 k \ge \nu + 1 k ≥ ν + 1 , the Chebyshev coefficients of f f f satisfy
∣ a k ∣ ≤ 2 V π k ( k − 1 ) … ( k − ν ) ≤ 2 V π ( k − ν ) ν + 1 |a_k| \le \frac{2 V}{\pi k (k-1) \ldots (k-\nu)} \le \frac{2V}{\pi(k - \nu)^{\nu+1}} ∣ a k ∣ ≤ πk ( k − 1 ) … ( k − ν ) 2 V ≤ π ( k − ν ) ν + 1 2 V 6.6.2 Projection and interpolation ¶ The Chebyshev projection is obtained by truncating the Chebyshev series
f n ( x ) = ∑ k = 0 n a k T k ( x ) f_n(x) = \sum_{k=0}^n a_k T_k(x) f n ( x ) = k = 0 ∑ n a k T k ( x ) Let p n ( x ) p_n(x) p n ( x ) be the interpolation of f ( x ) f(x) f ( x ) at n + 1 n+1 n + 1 Chebyshev points { x j } \{ x_j \} { x j } , and let us write it as
p n ( x ) = ∑ k = 0 n c k T k ( x ) p_n(x) = \sum_{k=0}^n c_k T_k(x) p n ( x ) = k = 0 ∑ n c k T k ( x ) The coefficients c k c_k c k are determined from the interpolation conditions p n ( x j ) = f ( x j ) p_n(x_j) = f(x_j) p n ( x j ) = f ( x j ) , j = 0 , 1 , … , n j=0,1,\ldots,n j = 0 , 1 , … , n .
6.6.2.1 Differentiable functions ¶ Theorem 3 (Convergence for differentiable functions)
If f f f satisfies the conditions of Theorem 2 with V V V again denoting the total variation of f ( ν ) f^{(\nu)} f ( ν ) for some ν ≥ 1 \nu \ge 1 ν ≥ 1 , then for any n > ν n > \nu n > ν , its Chebyshev projections satisfy
∥ f − f n ∥ ∞ ≤ 2 V π ν ( n − ν ) ν \norm{f - f_n}_\infty \le \frac{2 V}{\pi \nu (n - \nu)^\nu} ∥ f − f n ∥ ∞ ≤ π ν ( n − ν ) ν 2 V and its Chebyshev interpolants satisfy
∥ f − p n ∥ ∞ ≤ 4 V π ν ( n − ν ) ν \norm{f - p_n}_\infty \le \frac{4 V}{\pi \nu (n - \nu)^\nu} ∥ f − p n ∥ ∞ ≤ π ν ( n − ν ) ν 4 V Thus f ( ν ) f^{(\nu)} f ( ν ) of bounded variation implies that the convergence is at an algebraic rate of O ( n − ν ) \order{n^{-\nu}} O ( n − ν ) for n → ∞ n \to \infty n → ∞ . The more derivative the function has, the faster is the convergence.
Example 1 (Piecewise continuous function)
For ν = 0 \nu = 0 ν = 0 , e.g., f ( x ) = sign ( x ) f(x) = \textrm{sign}(x) f ( x ) = sign ( x ) , we cannot hope for convergence since polynomials are continuous and sign function is not.
Even the projections do not converge, since
∣ a k ∣ = O ( 1 k ) , f ( x ) − f n ( x ) = ? ∑ k = n + 1 ∞ a k T k ( x ) |a_k| = \order{ \frac{1}{k} }, \qquad f(x) - f_n(x) \overset{?}{=} \sum_{k=n+1}^\infty a_k T_k(x) ∣ a k ∣ = O ( k 1 ) , f ( x ) − f n ( x ) = ? k = n + 1 ∑ ∞ a k T k ( x ) and
∥ f − f n ∥ ∞ ≤ ∑ k = n + 1 ∞ ∣ a k ∣ ↛ 0 \norm{f - f_n}_\infty \le \sum_{k=n+1}^\infty |a_k| \not\to 0 ∥ f − f n ∥ ∞ ≤ k = n + 1 ∑ ∞ ∣ a k ∣ → 0 since ∑ k ( 1 / k ) \sum_k (1/k) ∑ k ( 1/ k ) is not finite.
f = lambda x: sign(x)
xp = linspace(-1,1,1000)
for n in [11,21,41]:
theta = linspace(0,pi,n+1)
x = -cos(theta)
y = f(x)
yp = barycentric_interpolate(x,y,xp)
plot(xp,yp,label='n='+str(n))
plot(xp,f(xp),label='Exact')
legend(), xlabel('x'), ylabel('y');
On the average, the error decreases, but around x = 0 x=0 x = 0 , it does not decrease. The Gibbs oscillations are observed when we try to approximate a discontinuous function with polynomials.
Example 2 (Piecewise differentiable function)
For ν = 1 \nu = 1 ν = 1 , e.g., f ( x ) = ∣ x ∣ f(x) = |x| f ( x ) = ∣ x ∣ , we have V = 2 V=2 V = 2 and the above theorem predicts convergence since
∥ f − f n ∥ ∞ ≤ 4 π ( n − 1 ) , ∥ f − p n ∥ ∞ ≤ 8 π ( n − 1 ) \norm{f - f_n}_\infty \le \frac{4}{\pi(n-1)}, \qquad \norm{f - p_n}_\infty \le \frac{8}{\pi (n-1)} ∥ f − f n ∥ ∞ ≤ π ( n − 1 ) 4 , ∥ f − p n ∥ ∞ ≤ π ( n − 1 ) 8 The degree 10 interpolant looks like this.
f = lambda x: abs(x)
n = 10
xp = linspace(-1,1,1000)
theta = linspace(0,pi,n+1)
x = -cos(theta)
y = f(x)
yp = barycentric_interpolate(x,y,xp)
plot(x,y,'o',label='Data')
plot(xp,f(xp),label='Exact')
plot(xp,yp,label='Interpolant')
legend(), xlabel('x'), ylabel('y')
title('Degree '+str(n)+' interpolant');
Now compute error norm for increasing degree. The norm is only an approximation.
n = 10
nvalues,evalues = [],[]
for i in range(10):
theta = linspace(0,pi,n+1)
x = -cos(theta)
y = f(x)
yp = barycentric_interpolate(x,y,xp)
e = abs(f(xp) - yp).max()
nvalues.append(n), evalues.append(e)
n = 2 * n
nvalues = array(nvalues)
loglog(nvalues,evalues,'o-',label="Error")
loglog(nvalues, 8/(pi*(nvalues-1)),label="$8/(\\pi (n-1))$")
legend(), xlabel('n'), ylabel('$||f-p_n||$');
In log-log scale, we see that log ∥ f − p n ∥ ∞ \log\norm{f-p_n}_\infty log ∥ f − p n ∥ ∞ versus log ( n ) \log(n) log ( n ) is a straight line with slope -1 (check), consistent with the theorem.
6.6.2.2 Analytic functions ¶ For any ρ > 1 \rho > 1 ρ > 1 , the Bernstein ellipse E ρ E_\rho E ρ is the ellipse with foci at x = − 1 x=-1 x = − 1 and x = + 1 x=+1 x = + 1 and
ρ = semi-minor axis + semi-major axis \rho = \textrm{semi-minor axis + semi-major axis} ρ = semi-minor axis + semi-major axis It can be obtained by mapping the circle of radius ρ, ξ = ρ exp ( i θ ) \xi = \rho \exp(\ii \theta) ξ = ρ exp ( i θ ) , under the Joukowsky map
z = 1 2 ( ξ + ξ − 1 ) z = \half (\xi + \xi^{-1}) z = 2 1 ( ξ + ξ − 1 ) theta = linspace(0,2*pi,500)
for rho in arange(1.1,2.1,0.1):
xi = rho * exp(1j * theta)
z = 0.5 * (xi + 1/xi)
plot(real(z), imag(z),'k-')
plot([-1,1],[0,0],'r-'), axis('equal')
title('Bernstein ellipses');
Theorem 4 (Decay of Chebyshev coefficients: analytic functions)
Let f : [ − 1 , 1 ] → R f : [-1,1] \to \re f : [ − 1 , 1 ] → R be analytically continuable to the open Bernstein ellipse E ρ E_\rho E ρ for some ρ > 1 \rho > 1 ρ > 1 , where it satisfies ∣ f ( x ) ∣ ≤ M |f(x)| \le M ∣ f ( x ) ∣ ≤ M for some M M M . Then its Chebyshev coefficients satisfy
∣ a 0 ∣ ≤ M , ∣ a k ∣ ≤ 2 M ρ k , k ≥ 1 |a_0| \le M, \qquad |a_k| \le \frac{2M}{\rho^k}, \qquad k \ge 1 ∣ a 0 ∣ ≤ M , ∣ a k ∣ ≤ ρ k 2 M , k ≥ 1 Theorem 5 (Convergence for analytic functions)
If f f f has the properties of Theorem 4 , then for each n ≥ 0 n \ge 0 n ≥ 0 , its Chebyshev projections satisfy
∥ f − f n ∥ ∞ ≤ 2 M ρ − n ρ − 1 \norm{f - f_n}_\infty \le \frac{2 M \rho^{-n}}{\rho - 1} ∥ f − f n ∥ ∞ ≤ ρ − 1 2 M ρ − n and its Chebyshev interpolants satisfy
∥ f − p n ∥ ∞ ≤ 4 M ρ − n ρ − 1 \norm{f - p_n}_\infty \le \frac{4 M \rho^{-n}}{\rho - 1} ∥ f − p n ∥ ∞ ≤ ρ − 1 4 M ρ − n We interpolate the function f ( x ) = 1 / ( 1 + 16 x 2 ) f(x) = 1/(1+16 x^2) f ( x ) = 1/ ( 1 + 16 x 2 ) with Chebyshev points. It is analytic in a region of the complex plane enclosing the real interval [ − 1 , 1 ] [-1,1] [ − 1 , 1 ] .
f = lambda x: 1.0/(1.0 + 16 * x**2)
n = 10
nvalues,evalues = [],[]
for i in range(10):
theta = linspace(0,pi,n+1)
x = -cos(theta)
y = f(x)
yp = barycentric_interpolate(x,y,xp)
e = abs(f(xp) - yp).max()
nvalues.append(n), evalues.append(e)
n = n + 10
nvalues = array(nvalues)
semilogy(nvalues,evalues,'o-',label="Error")
legend(), xlabel('n'), ylabel('$||f-p_n||$');
We see that log ∥ f − p n ∥ ∞ \log\norm{f - p_n}_\infty log ∥ f − p n ∥ ∞ versus n n n is a straight line with negative slope, indicating exponential decrease of the error wrt n n n .
Trefethen, L. N. (2019). Approximation Theory and Approximation Practice, Extended Edition . Society for Industrial. 10.1137/1.9781611975949