The Newton-Raphson method to find the zeros of f ( x ) f(x) f ( x ) can be written as
x n + 1 = ϕ ( x n ) , ϕ ( x ) = x − f ( x ) f ′ ( x ) x_{n+1} = \phi(x_n), \qquad \phi(x) = x - \frac{f(x)}{f'(x)} x n + 1 = ϕ ( x n ) , ϕ ( x ) = x − f ′ ( x ) f ( x ) At a root α, we have
f ( α ) = 0 , ϕ ( α ) = α − f ( α ) f ′ ( α ) = α f(\alpha) = 0, \qquad \phi(\alpha) = \alpha - \frac{f(\alpha)}{f'(\alpha)} = \alpha f ( α ) = 0 , ϕ ( α ) = α − f ′ ( α ) f ( α ) = α Thus the root is a fixed point of the function ϕ. We have converted
the problem of root finding into one of finding the fixed points of a
map via the fixed point iteration x n + 1 = ϕ ( x n ) x_{n+1} = \phi(x_n) x n + 1 = ϕ ( x n ) .
To find a \sqrt{a} a , we can find the roots of f ( x ) = x 2 − a f(x) = x^2 - a f ( x ) = x 2 − a . We can
rewrite this as a fixed point relation in many ways, e.g.,
x = x + c ( x 2 − a ) x = x + c(x^2 - a) x = x + c ( x 2 − a ) for some c ≠ 0 c \ne 0 c = 0
x = a x x = \frac{a}{x} x = x a
x = 1 2 ( x + a x ) x = \half(x + \frac{a}{x}) x = 2 1 ( x + x a ) , which is Newton method.
Not all these fixed point iterations will converge.
a = 3.0
c = 0.1
x1, x2, x3 = 2.0, 2.0, 2.0
print("%6d %18.10e %18.10e %18.10e" % (0,x1,x2,x3))
for i in range(10):
x1 = x1 + c*(x1**2 - a)
x2 = a/x2
x3 = 0.5*(x3 + a/x3)
print("%6d %18.10e %18.10e %18.10e" % (i+1,x1,x2,x3))
0 2.0000000000e+00 2.0000000000e+00 2.0000000000e+00
1 2.1000000000e+00 1.5000000000e+00 1.7500000000e+00
2 2.2410000000e+00 2.0000000000e+00 1.7321428571e+00
3 2.4432081000e+00 1.5000000000e+00 1.7320508100e+00
4 2.7401346820e+00 2.0000000000e+00 1.7320508076e+00
5 3.1909684895e+00 1.5000000000e+00 1.7320508076e+00
6 3.9091964797e+00 2.0000000000e+00 1.7320508076e+00
7 5.1373781913e+00 1.5000000000e+00 1.7320508076e+00
8 7.4766436594e+00 2.0000000000e+00 1.7320508076e+00
9 1.2766663700e+01 1.5000000000e+00 1.7320508076e+00
10 2.8765433904e+01 2.0000000000e+00 1.7320508076e+00
Only the third form, the Newton-Method, is converging to the root.
Let ϕ : [ a , b ] → [ a , b ] \phi : [a,b] \to [a,b] ϕ : [ a , b ] → [ a , b ] be continuous. Then x = ϕ ( x ) x = \phi(x) x = ϕ ( x ) has
atleast one solution in [ a , b ] [a,b] [ a , b ] .
Consider the continuous function
h ( x ) = ϕ ( x ) − x h(x) = \phi(x) - x h ( x ) = ϕ ( x ) − x for which
h ( a ) = ϕ ( a ) − a ≥ 0 , h ( b ) = ϕ ( b ) − b ≤ 0 h(a) = \phi(a) - a \ge 0, \qquad h(b) = \phi(b) - b \le 0 h ( a ) = ϕ ( a ) − a ≥ 0 , h ( b ) = ϕ ( b ) − b ≤ 0 By intermediate value theorem, h ( x ) h(x) h ( x ) must have atleast one root in
[ a , b ] [a,b] [ a , b ] , which is also the fixed point of ϕ ( x ) \phi(x) ϕ ( x ) .
Let ϕ : [ a , b ] → [ a , b ] \phi : [a,b] \to [a,b] ϕ : [ a , b ] → [ a , b ] be continuous and for some λ ∈ ( 0 , 1 ) \lambda \in (0,1) λ ∈ ( 0 , 1 )
∣ ϕ ( x ) − ϕ ( y ) ∣ ≤ λ ∣ x − y ∣ , ∀ x , y ∈ [ a , b ] |\phi(x) - \phi(y)| \le \lambda |x-y|, \quad \forall x, y \in [a,b] ∣ ϕ ( x ) − ϕ ( y ) ∣ ≤ λ ∣ x − y ∣ , ∀ x , y ∈ [ a , b ] Then x = ϕ ( x ) x=\phi(x) x = ϕ ( x ) has a unique solution α ∈ [ a , b ] \alpha \in [a,b] α ∈ [ a , b ] . Also, the iterates
x n = ϕ ( x n − 1 ) , n ≥ 1 x_n = \phi(x_{n-1}), \qquad n \ge 1 x n = ϕ ( x n − 1 ) , n ≥ 1 will converge to α for any choice of x 0 ∈ [ a , b ] x_0 \in [a,b] x 0 ∈ [ a , b ] and
∣ α − x n ∣ ≤ λ n 1 − λ ∣ x 1 − x 0 ∣ |\alpha - x_n| \le \frac{\lambda^n}{1-\lambda} |x_1 - x_0| ∣ α − x n ∣ ≤ 1 − λ λ n ∣ x 1 − x 0 ∣ Uniqueness. Suppose ϕ has two fixed points α , β ∈ [ a , b ] \alpha, \beta \in [a,b] α , β ∈ [ a , b ] . Then
∣ α − β ∣ = ∣ ϕ ( α ) − ϕ ( β ) ∣ ≤ λ ∣ α − β ∣ |\alpha - \beta| = |\phi(\alpha) - \phi(\beta)| \le \lambda |\alpha - \beta| ∣ α − β ∣ = ∣ ϕ ( α ) − ϕ ( β ) ∣ ≤ λ ∣ α − β ∣ and hence
( 1 − λ ) ∣ α − β ∣ ≤ 0 (1-\lambda) |\alpha - \beta| \le 0 ( 1 − λ ) ∣ α − β ∣ ≤ 0 Since 0 < λ < 1 0 < \lambda < 1 0 < λ < 1 , we conclude that only equality is possible, which
implies that α = β \alpha =\beta α = β .
Convergence. Since ϕ ( [ a , b ] ) ⊂ [ a , b ] \phi([a,b]) \subset [a,b] ϕ ([ a , b ]) ⊂ [ a , b ] , the
sequence generated by x n = ϕ ( x n − 1 ) x_n = \phi(x_{n-1}) x n = ϕ ( x n − 1 ) is contained in [ a , b ] [a,b] [ a , b ] .
∣ α − x n + 1 ∣ = ∣ ϕ ( α ) − ϕ ( x n ) ∣ ≤ λ ∣ α − x n ∣ |\alpha - x_{n+1}| = |\phi(\alpha) - \phi(x_n)| \le \lambda |\alpha - x_n| ∣ α − x n + 1 ∣ = ∣ ϕ ( α ) − ϕ ( x n ) ∣ ≤ λ ∣ α − x n ∣ and by induction
∣ α − x n ∣ ≤ λ n ∣ α − x 0 ∣ |\alpha - x_n| \le \lambda^n |\alpha - x_0| ∣ α − x n ∣ ≤ λ n ∣ α − x 0 ∣ As n → ∞ n \to \infty n → ∞ , λ n → 0 \lambda^n \to 0 λ n → 0 so that x n → α x_n \to \alpha x n → α .
Error bound. Using contraction property and triangle inequality, we have
∣ α − x 0 ∣ ≤ ∣ α − x 1 ∣ + ∣ x 1 − x 0 ∣ ≤ λ ∣ α − x 0 ∣ + ∣ x 1 − x 0 ∣ |\alpha - x_0| \le |\alpha - x_1| + |x_1 - x_0| \le \lambda |\alpha - x_0| + |x_1 - x_0| ∣ α − x 0 ∣ ≤ ∣ α − x 1 ∣ + ∣ x 1 − x 0 ∣ ≤ λ ∣ α − x 0 ∣ + ∣ x 1 − x 0 ∣ and hence
∣ α − x 0 ∣ ≤ 1 1 − λ ∣ x 1 − x 0 ∣ |\alpha - x_0| \le \frac{1}{1-\lambda} |x_1 - x_0| ∣ α − x 0 ∣ ≤ 1 − λ 1 ∣ x 1 − x 0 ∣ Combining this with (11) , we get
∣ α − x n ∣ ≤ λ n ∣ α − x 0 ∣ ≤ λ n 1 − λ ∣ x 1 − x 0 ∣ |\alpha - x_n| \le \lambda^n |\alpha - x_0| \le \frac{\lambda^n}{1-\lambda} |x_1 - x_0| ∣ α − x n ∣ ≤ λ n ∣ α − x 0 ∣ ≤ 1 − λ λ n ∣ x 1 − x 0 ∣ We can derive an error estimate as follows. Similar to (13) , we can show that
∣ α − x n ∣ ≤ 1 1 − λ ∣ x n + 1 − x n ∣ |\alpha - x_n| \le \frac{1}{1-\lambda} |x_{n+1} - x_n| ∣ α − x n ∣ ≤ 1 − λ 1 ∣ x n + 1 − x n ∣ and hence
∣ α − x n + 1 ∣ ≤ λ ∣ α − x n ∣ ≤ λ 1 − λ ∣ x n + 1 − x n ∣ |\alpha - x_{n+1}| \le \lambda |\alpha - x_n| \le \frac{\lambda}{1-\lambda} |x_{n+1} -
x_n| ∣ α − x n + 1 ∣ ≤ λ ∣ α − x n ∣ ≤ 1 − λ λ ∣ x n + 1 − x n ∣ which is a more sharper error bound since λ < 1 \lambda < 1 λ < 1 .
Assume that ϕ : [ a , b ] → [ a , b ] \phi : [a,b] \to [a,b] ϕ : [ a , b ] → [ a , b ] is continuously differentiable and
λ = max a ≤ x ≤ b ∣ ϕ ′ ( x ) ∣ < 1 \lambda = \max_{a \le x \le b} |\phi'(x)| < 1 λ = a ≤ x ≤ b max ∣ ϕ ′ ( x ) ∣ < 1 Then
ϕ has a unique fixed point α ∈ [ a , b ] \alpha \in [a,b] α ∈ [ a , b ] .
For any x 0 ∈ [ a , b ] x_0 \in [a,b] x 0 ∈ [ a , b ] , the iterations x n + 1 = ϕ ( x n ) x_{n+1} = \phi(x_{n}) x n + 1 = ϕ ( x n )
converge to α.
∣ α − x n ∣ ≤ λ n ∣ α − x 0 ∣ ≤ λ n 1 − λ ∣ x 1 − x 0 ∣ |\alpha - x_n| \le \lambda^n |\alpha - x_0| \le \frac{\lambda^n}{1-\lambda} |
x_1 - x_0| ∣ α − x n ∣ ≤ λ n ∣ α − x 0 ∣ ≤ 1 − λ λ n ∣ x 1 − x 0 ∣ and
lim n → ∞ α − x n + 1 α − x n = ϕ ′ ( α ) \lim_{n \to \infty} \frac{\alpha - x_{n+1}}{\alpha - x_n} = \phi'(\alpha) n → ∞ lim α − x n α − x n + 1 = ϕ ′ ( α ) (1,2) For some ξ between x x x , y y y , we have
ϕ ( x ) − ϕ ( y ) = ϕ ′ ( ξ ) ( x − y ) \phi(x) - \phi(y) = \phi'(\xi) (x-y) ϕ ( x ) − ϕ ( y ) = ϕ ′ ( ξ ) ( x − y ) and hence
∣ ϕ ( x ) − ϕ ( y ) ∣ = ∣ ϕ ′ ( ξ ) ∣ ∣ x − y ∣ ≤ λ ∣ x − y ∣ |\phi(x) - \phi(y)| = |\phi'(\xi)| |x-y| \le \lambda |x-y| ∣ ϕ ( x ) − ϕ ( y ) ∣ = ∣ ϕ ′ ( ξ ) ∣∣ x − y ∣ ≤ λ ∣ x − y ∣ so that ϕ is a contraction map and by previous theorem, (1) and (2) follow.
(3) Now
α − x n + 1 = ϕ ( α ) − ϕ ( x n ) = ϕ ′ ( ξ n ) ( α − x n ) , ξ n between α , x n \alpha - x_{n+1} = \phi(\alpha) - \phi(x_n) = \phi'(\xi_n) (\alpha - x_n), \qquad \xi_n \textrm{ between } \alpha, x_n α − x n + 1 = ϕ ( α ) − ϕ ( x n ) = ϕ ′ ( ξ n ) ( α − x n ) , ξ n between α , x n and ξ n → α \xi_n \to \alpha ξ n → α so that
lim n → ∞ α − x n + 1 α − x n = lim n → ∞ ϕ ′ ( ξ n ) = ϕ ′ ( α ) \lim_{n \to \infty} \frac{\alpha - x_{n+1}}{\alpha - x_n} = \lim_{n \to \infty}
\phi'(\xi_n) = \phi'(\alpha) n → ∞ lim α − x n α − x n + 1 = n → ∞ lim ϕ ′ ( ξ n ) = ϕ ′ ( α ) If ϕ ′ ( α ) ≠ 0 \phi'(\alpha) \ne 0 ϕ ′ ( α ) = 0 , then the sequence { x n } \{ x_n \} { x n } converges to α with order p = 1 p=1 p = 1 , i.e., we have linear convergence.
Pick a number λ satisfying
∣ ϕ ′ ( α ) ∣ < λ < 1 |\phi'(\alpha)| < \lambda < 1 ∣ ϕ ′ ( α ) ∣ < λ < 1 Then pick an interval I = [ α − δ , α + δ ] I = [\alpha - \delta, \alpha + \delta] I = [ α − δ , α + δ ] such that
max x ∈ I ∣ ϕ ′ ( x ) ∣ ≤ λ < 1 \max_{x \in I} |\phi'(x)| \le \lambda < 1 x ∈ I max ∣ ϕ ′ ( x ) ∣ ≤ λ < 1 Now for any x ∈ I x \in I x ∈ I , ∣ α − x ∣ ≤ δ |\alpha - x| \le \delta ∣ α − x ∣ ≤ δ and
∣ α − ϕ ( x ) ∣ = ∣ ϕ ( α ) − ϕ ( x ) ∣ = ∣ ϕ ′ ( ξ ) ∣ ⋅ ∣ α − x ∣ |\alpha - \phi(x)| = |\phi(\alpha) - \phi(x)| = |\phi'(\xi)| \cdot |\alpha - x| ∣ α − ϕ ( x ) ∣ = ∣ ϕ ( α ) − ϕ ( x ) ∣ = ∣ ϕ ′ ( ξ ) ∣ ⋅ ∣ α − x ∣ where ξ is between α , x \alpha, x α , x and hence in I I I , so that
∣ α − ϕ ( x ) ∣ ≤ λ ∣ α − x ∣ < ∣ α − x ∣ ≤ δ |\alpha - \phi(x)| \le \lambda |\alpha - x| < |\alpha - x| \le \delta ∣ α − ϕ ( x ) ∣ ≤ λ ∣ α − x ∣ < ∣ α − x ∣ ≤ δ Hence we have ϕ ( I ) ⊂ I \phi(I) \subset I ϕ ( I ) ⊂ I . Now apply previous theorem using [ a , b ] = [ α − δ , α + δ ] [a,b] = [\alpha- \delta,\alpha+\delta] [ a , b ] = [ α − δ , α + δ ] .
To find the root of f ( x ) = x 2 − a f(x)=x^2-a f ( x ) = x 2 − a , we have tried the following
x n + 1 = ϕ ( x n ) , ϕ ( x ) = x + c ( x 2 − a ) x_{n+1} = \phi(x_n), \qquad \phi(x) = x + c(x^2 -a) x n + 1 = ϕ ( x n ) , ϕ ( x ) = x + c ( x 2 − a ) which did not converge. We need
∣ ϕ ′ ( a ) ∣ = ∣ 1 + 2 c a ∣ < 1 ⟹ − 1 a < c < 0 |\phi'(\sqrt{a})| = |1 + 2 c \sqrt{a}| < 1 \Longrightarrow - \frac{1}{\sqrt{a}} < c < 0 ∣ ϕ ′ ( a ) ∣ = ∣1 + 2 c a ∣ < 1 ⟹ − a 1 < c < 0 For a = 2 a=2 a = 2 , the good values are c ∈ ( − 0.707 , 0.0 ) c \in (-0.707, 0.0) c ∈ ( − 0.707 , 0.0 ) , so try with
c = − 0.1 c=-0.1 c = − 0.1 for example.
Let α be a fixed point of ϕ and let ϕ be p p p times continuously differentiable around α, for some p ≥ 2 p \ge 2 p ≥ 2 . Further, assume
ϕ ′ ( α ) = ϕ ′ ′ ( α ) = … = ϕ ( p − 1 ) ( α ) = 0 \phi'(\alpha) = \phi''(\alpha) = \ldots = \phi^{(p-1)}(\alpha) = 0 ϕ ′ ( α ) = ϕ ′′ ( α ) = … = ϕ ( p − 1 ) ( α ) = 0 ϕ ( p ) ( α ) ≠ 0 \phi^{(p)}(\alpha) \ne 0 ϕ ( p ) ( α ) = 0 Then if the initial guess x 0 x_0 x 0 is sufficiently close to α, the iteration x n + 1 = ϕ ( x n ) x_{n+1} = \phi(x_n) x n + 1 = ϕ ( x n ) will have order of convergence p p p and
lim n → ∞ α − x n + 1 ( α − x n ) p = ( − 1 ) p − 1 ϕ ( p ) ( α ) p ! \lim_{n \to \infty} \frac{\alpha - x_{n+1}}{(\alpha - x_n)^p} = (-1)^{p-1}
\frac{\phi^{(p)}(\alpha)}{p!} n → ∞ lim ( α − x n ) p α − x n + 1 = ( − 1 ) p − 1 p ! ϕ ( p ) ( α ) Since ϕ ′ ( α ) = 0 \phi'(\alpha) = 0 ϕ ′ ( α ) = 0 , we can choose an interval I = [ α − δ , α + δ ] I = [\alpha-\delta,\alpha+\delta] I = [ α − δ , α + δ ] in which ∣ ϕ ′ ( x ) ∣ < 1 |\phi'(x)| < 1 ∣ ϕ ′ ( x ) ∣ < 1 . Using previous theorem, we know the iterations converge for any initial guess x 0 ∈ I x_0 \in I x 0 ∈ I .
Now by Taylor expansion around α
x n + 1 = ϕ ( x n ) = ϕ ( α ) + ( x n − α ) ϕ ′ ( α ) + … + ( x n − α ) p − 1 ( p − 1 ) ! ϕ ( p − 1 ) ( α ) + ( x n − α ) p p ! ϕ ( p ) ( ξ n ) \begin{aligned}
x_{n+1} &=& \phi(x_n) \\
&=& \phi(\alpha) + (x_n-\alpha) \phi'(\alpha) + \ldots + \frac{(x_n-\alpha)^{p-1}}
{(p-1)!} \phi^{(p-1)}(\alpha) + \frac{(x_n-\alpha)^p}{p!} \phi^{(p)}(\xi_n)
\end{aligned} x n + 1 = = ϕ ( x n ) ϕ ( α ) + ( x n − α ) ϕ ′ ( α ) + … + ( p − 1 )! ( x n − α ) p − 1 ϕ ( p − 1 ) ( α ) + p ! ( x n − α ) p ϕ ( p ) ( ξ n ) for some ξ n \xi_n ξ n between x n , α x_n, \alpha x n , α . Using the given conditions on ϕ
x n + 1 = α + ( x n − α ) p p ! ϕ ( p ) ( ξ n ) x_{n+1} = \alpha + \frac{(x_n-\alpha)^p}{p!} \phi^{(p)}(\xi_n) x n + 1 = α + p ! ( x n − α ) p ϕ ( p ) ( ξ n ) and hence we have p p p ’th order convergence
∣ x n + 1 − α ∣ ≤ M ∣ x n − α ∣ p , M = 1 p ! max ∣ ϕ ( p ) ∣ |x_{n+1} - \alpha| \le M |x_n-\alpha|^p, \qquad M = \frac{1}{p!} \max |\phi^{(p)}| ∣ x n + 1 − α ∣ ≤ M ∣ x n − α ∣ p , M = p ! 1 max ∣ ϕ ( p ) ∣ The last result also follows easily since ξ n → α \xi_n \to \alpha ξ n → α .
Example 3 (Newton-Raphson method)
The iteration function for Newton-Raphson method is
ϕ ( x ) = x − f ( x ) f ′ ( x ) \phi(x) = x - \frac{f(x)}{f'(x)} ϕ ( x ) = x − f ′ ( x ) f ( x ) for which
ϕ ′ ( x ) = f ( x ) f ′ ′ ( x ) [ f ′ ( x ) ] 2 , ϕ ′ ( α ) = 0 , ϕ ′ ′ ( α ) = f ′ ′ ( α ) f ′ ( α ) \phi'(x) = \frac{f(x) f''(x)}{[f'(x)]^2}, \qquad \phi'(\alpha) = 0, \qquad \phi''(\alpha) =
\frac{f''(\alpha)}{f'(\alpha)} ϕ ′ ( x ) = [ f ′ ( x ) ] 2 f ( x ) f ′′ ( x ) , ϕ ′ ( α ) = 0 , ϕ ′′ ( α ) = f ′ ( α ) f ′′ ( α ) Hence Newton method converges with order p = 2 p=2 p = 2 provided f ′ ( α ) ≠ 0 f'(\alpha) \ne 0 f ′ ( α ) = 0 .
Consider the function
f ( x ) = ( x − 1 ) 2 sin ( x ) f(x) = (x-1)^2 \sin(x) f ( x ) = ( x − 1 ) 2 sin ( x ) for which x = 1 x=1 x = 1 is a double root.
def f(x):
return (x-1.0)**2 * sin(x)
def df(x):
return 2.0*(x-1.0)*sin(x) + (x-1.0)**2 * cos(x)
x = linspace(0.0,2.0,100)
plot(x,f(x)), xlabel('x'), ylabel('f(x)'), grid(True);
Here is the Newton method
def newton(x0,m=1.0):
n = 50
x = zeros(50)
x[0] = x0
print("%6d %24.14e" % (0,x[0]))
for i in range(1,50):
x[i] = x[i-1] - m*f(x[i-1])/df(x[i-1])
if i > 1:
r = (x[i] - x[i-1])/(x[i-1]-x[i-2])
else:
r = 0.0
print("%6d %24.14e %14.6e" % (i,x[i],r))
if abs(f(x[i])) < 1.0e-14:
break
The Newton method gives
0 2.00000000000000e+00
1 1.35163555744248e+00 0.000000e+00
2 1.18244356861394e+00 2.609520e-01
3 1.09450383817604e+00 5.197630e-01
4 1.04837639635805e+00 5.245347e-01
5 1.02452044172239e+00 5.171749e-01
6 1.01235093391487e+00 5.101245e-01
7 1.00619920246051e+00 5.055037e-01
8 1.00310567444820e+00 5.028711e-01
9 1.00155437342780e+00 5.014666e-01
10 1.00077757303341e+00 5.007412e-01
11 1.00038888338214e+00 5.003726e-01
12 1.00019446594325e+00 5.001868e-01
13 1.00009723903915e+00 5.000935e-01
14 1.00004862103702e+00 5.000468e-01
15 1.00002431089794e+00 5.000234e-01
16 1.00001215554384e+00 5.000117e-01
17 1.00000607779564e+00 5.000059e-01
18 1.00000303890375e+00 5.000029e-01
19 1.00000151945336e+00 5.000015e-01
20 1.00000075972705e+00 5.000007e-01
21 1.00000037986362e+00 5.000004e-01
22 1.00000018993183e+00 5.000002e-01
23 1.00000009496592e+00 5.000001e-01
Newton method is converging but only linearly.
1 Multiple roots ¶ Let α be a root of f ( x ) f(x) f ( x ) with multiplicity m m m , so that
f ( α ) = f ′ ( α ) = … = f ( m − 1 ) ( α ) = 0 , f ( m ) ( α ) ≠ 0 f(\alpha) = f'(\alpha) = \ldots = f^{(m-1)}(\alpha) = 0, \qquad f^{(m)}(\alpha) \ne 0 f ( α ) = f ′ ( α ) = … = f ( m − 1 ) ( α ) = 0 , f ( m ) ( α ) = 0 A Taylor expansion around α gives
f ( x ) = ( x − α ) m m ! f ( m ) ( ξ x ) , ξ x between α and x f(x) = \frac{(x-\alpha)^m}{m!} f^{(m)}(\xi_x), \qquad \textrm{$\xi_x$ between $
\alpha$ and $x$} f ( x ) = m ! ( x − α ) m f ( m ) ( ξ x ) , ξ x between α and x Near α, f ( x ) f(x) f ( x ) behaves like
f ( x ) = ( x − α ) m h ( x ) , h ( α ) ≠ 0 f(x) = (x-\alpha)^m h(x), \qquad h(\alpha) \ne 0 f ( x ) = ( x − α ) m h ( x ) , h ( α ) = 0 Let us apply Newton method to this function. Since
f ′ ( x ) = ( x − α ) m h ′ ( x ) + m ( x − α ) m − 1 h ( x ) f'(x) = (x-\alpha)^m h'(x) + m(x-\alpha)^{m-1} h(x) f ′ ( x ) = ( x − α ) m h ′ ( x ) + m ( x − α ) m − 1 h ( x ) so that the iteration function of Newton method is
ϕ ( x ) = x − f ( x ) f ′ ( x ) = x − ( x − α ) h ( x ) m h ( x ) + ( x − α ) h ′ ( x ) \phi(x) = x - \frac{f(x)}{f'(x)} = x - \frac{(x-\alpha) h(x)}{mh(x) + (x-\alpha)h'(x)} ϕ ( x ) = x − f ′ ( x ) f ( x ) = x − mh ( x ) + ( x − α ) h ′ ( x ) ( x − α ) h ( x ) This satisfies
ϕ ′ ( α ) = 1 − 1 m ≠ 0 if m ≥ 2 \phi'(\alpha) = 1 - \frac{1}{m} \ne 0 \qquad \textrm{if } m \ge 2 ϕ ′ ( α ) = 1 − m 1 = 0 if m ≥ 2 Thus Newton method converges since ∣ ϕ ′ ( α ) ∣ < 1 |\phi'(\alpha)| < 1 ∣ ϕ ′ ( α ) ∣ < 1 , but only linearly, with rate of convergence c = m − 1 m c = \frac{m-1}{m} c = m m − 1 .
To improve Newton method for multiple roots, we need an iteration function with ϕ ′ ( α ) = 0 \phi'(\alpha) = 0 ϕ ′ ( α ) = 0 . This is satisfied for
ϕ ( x ) = x − m f ( x ) f ′ ( x ) \phi(x) = x - m \frac{f(x)}{f'(x)} ϕ ( x ) = x − m f ′ ( x ) f ( x ) and
lim n → ∞ α − x n + 1 ( α − x n ) 2 = − 1 2 ϕ ′ ′ ( α ) \lim_{n \to \infty} \frac{\alpha - x_{n+1}}{(\alpha - x_n)^2} = - \half \phi''(\alpha) n → ∞ lim ( α − x n ) 2 α − x n + 1 = − 2 1 ϕ ′′ ( α ) which recovers the quadratic convergence of Newton method.