Praveen Chandrashekar

Centre for Applicable Mathematics, TIFR, Bangalore

[ People | News | Codes | Talks | Teaching | Publications | Calendar | Hiking | Contact ]

Computational hyperbolic PDE

Elective course with 5 credits
Pre-requisities: Basic PDE course, knowledge of atleast one of Python/Fortran/C/C++, instructors approval
Audience: Students in 4’th semester of Int-PhD, 3’rd year of Int-PhD and PhD

Syllabus

Linear equations: Conservation laws and differential equations, characteristics and Riemann problem for hyperbolic systems, finite volume methods, high resolution methods, boundary conditions, convergence, accuracy and stability, variable coefficient linear equations

MUSCL-Hancock, ENO-WENO schemes, time stepping, Central schemes

Nonlinear equations: Scalar problems and finite volume method, nonlinear systems, gas dynamics and Euler equations, FVM for nonlinear systems, approximate Riemann solvers, nonclassical hyperbolic problems, source terms

Multidimensional problems: Some PDE models, fully discrete and semi-discrete methods, methods for scalar and systems of pde

Parallel programming using MPI and PETSc (Fortran/C/C++)

Codes

References