Linear advection equation using FFT and RK4#
Solve using FFT
\[
u_t + c u_x = 0, \qquad x \in (0,2\pi), \qquad c = 1
\]
with initial condition
\[
u(x,0) = \sin(20 x) \exp(-5(x-\pi)^2)
\]
periodic boundary conditions and RK4 in time.
%config InlineBackend.figure_format='svg'
from pylab import *
Extend \(f :[a,b] \to R\) periodically to whole of \(R\).
# Evaluate f:[a,b] -> R at given x by extending periodically
def periodic(a,b,f,x):
y = a + mod(x-a, b-a)
fv = vectorize(f)
return fv(y)
Solve the problem.
# Set up grid and differentiation matrix:
N = 128; h = 2*pi/N; x = h*arange(1,N+1);
t = 0.0; dt = h/4.0
tmax = 2 * pi; tplot = 0.10;
plotgap = int(round(tplot/dt)); dt = tplot/plotgap;
nplots = int(round(tmax/tplot))
c = 1.0
f = lambda x: sin(20*x) * exp(-5*(x-pi)**2)
v = f(x)
# wave numbers
ik = 1j*zeros(N)
ik[0:N//2+1] = 1j*arange(0,N//2+1)
ik[N//2+1:] = 1j*arange(-N//2+1,0,1)
def diff(u):
u_hat = fft(u)
w_hat = ik * u_hat
w_hat[N//2] = 0.0
return real(ifft(w_hat))
# Time-stepping by leap-frog formula
data = []; data.append(list(zip(x, v)))
tdata = []; tdata.append(0.0)
for i in range(1,nplots):
for n in range(plotgap):
t = t + dt
k1 = -c * dt * diff(v)
k2 = -c * dt * diff(v+0.5*k1)
k3 = -c * dt * diff(v+0.5*k2)
k4 = -c * dt * diff(v+k3)
v += (1.0/6.0)*(k1 + 2.0*k2 + 2.0*k3 + k4)
data.append(list(zip(x, v)))
tdata.append(t);
Make animation#
from matplotlib import animation
from matplotlib import rc
rc('animation', html='jshtml')
# First set up the figure, the axis, and the plot element we want to animate
fig = figure(figsize=(10,6))
ax = axes(xlim=(0, 2*pi), ylim=(-1.1, 1.1))
line, = ax.plot([], [], 'r-', lw=2, label='u')
exact, = ax.plot([], [], 'b-', lw=1, label='exact')
ax.legend(loc='upper left')
ax.grid(True); ax.set_xlabel('x'); ax.set_ylabel('u')
close();
# initialization function: plot the background of each frame
def init():
line.set_data([], [])
return line,
# animation function. This is called sequentially
def animate(i):
x, v = zip(*data[i])
line.set_data(x, v)
vexact = periodic(0, 2*pi, f, array(x)-c*tdata[i])
exact.set_data(x, vexact)
return line,exact
# call the animator. blit=True means only re-draw the parts that have changed.
anim = animation.FuncAnimation(fig, animate, init_func=init, repeat=False,
frames=len(data), interval=50, blit=True)
# Save to file
try:
anim.save('linadv1d.mp4', fps=20, extra_args=['-vcodec', 'libx264'])
except:
print("Cannot save mp4 file")
# Use this for inline display with controls
anim
Compare this to a 6th order finite difference scheme from here:
python rk4cs.py -N 128 -cfl 0.25 -ic wpack -order 6
# Use this for inline display of movie
#from IPython.display import HTML
#HTML(anim.to_html5_video())